FGF2 posttranscriptionally down-regulates expression of SDF1 in bone marrow stromal cells through FGFR1 IIIc.
نویسندگان
چکیده
The chemokine stromal cell-derived factor-1 (SDF-1) is constitutively expressed by bone marrow stromal cells and plays key roles in hematopoiesis. Fibroblast growth factor 2 (FGF2), a member of the FGF family that plays important roles in developmental morphogenic processes, is abnormally elevated in the bone marrow from patients with clonal myeloid disorders and other disorders where normal hematopoiesis is impaired. Here, we report that FGF2 reduces SDF-1 secretion and protein content in bone marrow stromal cells. By inhibiting SDF-1 production, FGF2 compromises stromal cell support of hematopoietic progenitor cells. Reverse-transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that bone marrow stromal cells express 5 FGF receptors (FGFRs) among the 7 known FGFR subtypes. Blocking experiments identified FGFR1 IIIc as the receptor mediating FGF2 inhibition of SDF-1 expression in bone marrow stromal cells. Analysis of the mechanisms underlying FGF2 inhibition of SDF-1 production in bone marrow stromal cells revealed that FGF2 reduces the SDF-1 mRNA content by posttranscriptionally accelerating SDF-1 mRNA decay. Thus, we identify FGF2 as an inhibitor of SDF-1 production in bone marrow stromal cells and a regulator of stromal cell supportive functions for hematopoietic progenitor cells.
منابع مشابه
CHEMOKINES, CYTOKINES, AND INTERLEUKINS FGF2 posttranscriptionally down-regulates expression of SDF1 in bone marrow stromal cells through FGFR1 IIIc
The chemokine stromal cell–derived factor-1 (SDF-1) is constitutively expressed by bone marrow stromal cells and plays key roles in hematopoiesis. Fibroblast growth factor 2 (FGF2), a member of the FGF family that plays important roles in developmental morphogenic processes, is abnormally elevated in the bone marrow from patients with clonal myeloid disorders and other disorders where normal he...
متن کاملProperties of the Bone Marrow Stromal Microenvironment in Adult Patients with Acute Lymphoblastic Leukemia before and After Allogeneic Transplantation of Hematopoietic Stem Cells
The bone marrow stromal microenvironment that regulates normal hematopoiesis suffers during leukemia development and its treatment. In this study, we examined Multipotent Mesenchymal Stromal Cells (MMSCs) and fibroblast colony-forming units (CFU-F) derived from the Bone Marrow (BM) of 15 adult patients with acute lymphoblastic leukemia (ALL) before and after allogeneic hematopoietic stem cell t...
متن کاملFibroblast Growth Factor-2 facilitates the growth and chemo-resistance of leukemia cells in the bone marrow by modulating osteoblast functions
Stromal cells and osteoblasts play major roles in forming and modulating the bone marrow (BM) hematopoietic microenvironment. We have reported that FGF2 compromises stromal cell support of normal hematopoiesis. Here, we examined the effects of FGF2 on the leukemia microenvironment. In vitro, FGF2 significantly decreased the number of stromal-dependent and stromal-independent G0-leukemia cells i...
متن کاملبررسی اثر آگونیست -آدرنرژیکی ایزوپروترنول بر بیان miR-886-3p و miR-23a در سلولهای بنیادی مزانشیمی مغز استخوان انسان
Background and Objective: Mobilization of Hematopoietic Stem Cells (HSCs) for transplantation and the importance of -adrenergic signals in induction of this process have been well investigated. However, little is known about the role of -adrenergic signals in mobilization of HSCs and factors influenced by these signals. The Chemokine Stromal Derived Factor -1 (SDF-1) which is expressed by hum...
متن کاملMiR-886-3p Down Regulates CXCL12 (SDF1) Expression in Human Marrow Stromal Cells
Stromal Derived Factor 1 (SDF1 or CXCL12), is a chemokine known to be critical for the migration of cells in several tissue systems including the homing of the hematopoietic stem cell (HSC) to its niche in the bone marrow. A comparative analysis of miRNA expression profiles of two stromal cell lines, distinguishable by function and by CXCL12 expression (CXCL12+ and CXCL12-), revealed that the C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 109 4 شماره
صفحات -
تاریخ انتشار 2007